Robot- and computer-assisted craniotomy (CRANIO): from active systems to synergistic man-machine interaction.

نویسندگان

  • V Cunha-Cruz
  • A Follmann
  • A Popovic
  • P Bast
  • T Wu
  • S Heger
  • M Engelhardt
  • K Schmieder
  • K Radermacher
چکیده

Computer and robot assistance in craniotomy/craniectomy procedures is intended to increase precision and efficiency of the removal of calvarial tumours, enabling the preoperative design and manufacturing of the corresponding implant. In the framework of the CRANIO project, an active robotic system was developed to automate the milling processes based on a predefined resection planning. This approach allows for a very efficient milling process, but lacks feedback of the intra-operative process to the surgeon. To better integrate the surgeon into the process, a new teleoperated synergistic architecture was designed. This enables the surgeon to realize changes during the procedure and use their human cognitive capabilities. The preoperative planning information is used as guidance for the user interacting with the system through a master-slave architecture. In this article, the CRANIO system is presented together with this new synergistic approach. Experiments have been performed to evaluate the accuracy of the system in active and synergistic modes for the bone milling procedure. The laboratory studies showed the general feasibility of the new concept for the selected medical procedure and determined the accuracy of the system. Although the integration of the surgeon partially reduces the efficiency of the milling process compared with a purely active (automatic) milling, it provides more feedback and flexibility to the user during the intra-operative procedure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robot control system using SMR signals detection

One of the important issues in designing a brain-computer interface system is to select the type of mental activity to be imagined. In some of these systems, mental activity varies with user intent and action that must be controlled by the brain-computer system, and in a number of other signals, the received signals contain the same activity-related mental activity that should be performed by t...

متن کامل

Machine Learning and Citizen Science: Opportunities and Challenges of Human-Computer Interaction

Background and Aim: In processing large data, scientists have to perform the tedious task of analyzing hefty bulk of data. Machine learning techniques are a potential solution to this problem. In citizen science, human and artificial intelligence may be unified to facilitate this effort. Considering the ambiguities in machine performance and management of user-generated data, this paper aims to...

متن کامل

The Symbiosis of Human and Semantic Technology Through the Lens of Actor-Network Theory

Background:  Semantic technologies (STs) have made machine reasoning possible by providing intelligent data management methods. This capability has created new forms of interaction between humans and STs, which is called "semantic interaction."  The increasing spread of this form of interaction in daily life reveals the need to identify the factors affecting it and introduce the requirements of...

متن کامل

MAN-MACHINE INTERACTION SYSTEM FOR SUBJECT INDEPENDENT SIGN LANGUAGE RECOGNITION USING FUZZY HIDDEN MARKOV MODEL

Sign language recognition has spawned more and more interest in human–computer interaction society. The major challenge that SLR recognition faces now is developing methods that will scale well with increasing vocabulary size with a limited set of training data for the signer independent application. The automatic SLR based on hidden Markov models (HMMs) is very sensitive to gesture's shape inf...

متن کامل

A Framework for Dynamic Man-machine Interaction Implemented on an Autonomous Mobile Robot

| In the eld of advanced service robotics it is of major importance to design man-machine interfaces that are fast and robust enough to cope with fuzzy and rapid human gesture. This paper describes our implementation of a complex interactive behavior on our multi-degree-of-freedom robot Arnold. The desired behavior is to position Arnold in front of a person and reach for the human hand, making ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine

دوره 224 3  شماره 

صفحات  -

تاریخ انتشار 2010